Python for Teachers: A Workshop
Pycon 2009, Notes by Kirby Urner, 4D Solutions, Portland, Oregon, USA

Premise:

The new numeracy of our day, arising in circumstances in some ways analogous to the advent of the
abacus in dark ages Europe, via Liber Abacci by Fibonacci of Pisa, is arising in the wake of two
computer revolutions, PC (personal computer) and FOSS (free and open source software).

Past:

Since Leibniz at least, people have considered the possiblity of Machine Logic, have forecast what we
might today call computer languages. Now that these languages have grown up in our midst, we have a
need to deploy them within our pre-existing curricula, thereby altering same.

The connection to mathematics seems especially close, with Kenneth Iverson, designer of APL (A
Programming Language) thinking in terms of executable mathematics notations, e.g. APL is a
mathematical language which just happens to have the added virtue of being machine-runnable.

However mathematics permeates other subjects, including geography, linguistics and graphic design.
Bottom line: no field is entirely safe from the transformative influence of computer technology, or, in
more positive terms, pretty much any walk of life and/or discipline stands to benefit in some way, from
our growing mastery of integrated circuitry and digital networking.

Present:

At the outset of the 21* century, many technical professions are experiencing decreases in enrollment
and there's broad concern that civilian engineering in particular is ineffective in recruiting. The pre-
college mathematics track is considered largely to blame, coincidentally making it ripe for an overhaul
(or “makeover”). Revitalizing mathematics by making it more computer language friendly is the
strategy many have been suggesting. This is the strategy pursued in this workshop.

Future:

Without postulating a “one size fits all” outcome, we might reasonably presume that the object oriented
approach to programming will galvanize a number of overdue reforms. Considering “types of object”
is not a new aspect of logical and/or mathematical thought.

To treat polynomials, vectors, integers, polyhedra, sequences, sets, as “mathematical objects” is hardly a
stretch, and therefore bridging from pre-computer mathematics to Python's classes and instances takes
only a little groundwork. The edu-sig archive within the Python.org Web site provides many ideas for
how to proceed, contributed by Python Teachers with many different backgrounds.

To characterize mathematics itself as “extensible type systems” is likewise to suggest a fairly
sophisticated mental model, especially for a pre-college student eyeing a liberal studies program.

Of Technical Content and Lore

The topics below, far from exhaustive, give some idea of what a pre-college mathematics curriculum
might include.

A lot of these topics are somewhat unfamiliar from the standpoint of the existing Precalculus through
Calculus track. However, we consider the status quo track to be broken (see above).

Adding computer languages to the math learning experience doesn't just alter the budget (most the
software is free), it alters the content, or at least has the potential to do so.

Prime Numbers (sieves)

Prime Numbers (trials by division)

Euclid's Algorithm (Guido's gcd)

Rational Numbers

Polyhedra (as Python objects: scale, rotate, translate)
Figurate Numbers

Polyhedral Numbers (icosahedral, geodesic spheres)
Pascal's Triangle (triangular and tetrahedral numbers)
Fibonacci Numbers (converge to phi, pentagon math)
Vectors (VPython -- xyz, spherical coordinates etc.)
Modulo Numbers (override _ mul__, __add_)
Finite Groups (Python module)

Euclid's Extended Algorithm (needed for inverses)
Totient and Totative (gcd based)

Fermat's Little Theorem (assert...)

Euler's Theorem for Totients (assert...)

Mandelbrot Set (chaotic sequences)

Miller-Rabin (or Jython probablePrime)

RSA .encrypt(m, N)

RSA.decrypt(c, N, d=secretkey)

Let's start looking at the kind of pedagogy we might use, around Python in particular, to make this
material accessible. The word “pedagogy” is perhaps misleading however, as our trainees may not be
children or even young adults.

Just because we're redesigning the high school mathematics track doesn't mean older adults cannot or
will not benefit from revisiting this material. Gaining mastery over computing is what the Renaissance
was all about. Once the “abacus way” of doing arithemetic had spread to the hitherto innumerate, a
new merchant class was able to bootstrap itself.

The “second axis” of technical skills building is the story line or narrative, also known as the lore.

Why are we learning this material and what is it for? This is where the present curriculum is manifestly
weak, as the case for needing calculus on the job is often somewhat underwhelming. On the other
hand, a genre of story most students appreciate is the “how things work™ genre. How does the Internet
work? What must I know to manage a household, to cook, to find my way around in the world?

In sum, the “second axis” is about technical content passing relevance tests, and these tests vary with
student demographics. In Python for Teachers, we look at, run and write source code, but we also tell
stories about what we are doing and why. These stories vary by walk of life, task at hand and so on.

Thtels

é{)t{"o‘_/\ ('5"'!’?505.3)

Implicit in the above diagram is an assumption of limited bandwidth (the learner's capacity to process
information). Getting densely technical moves us away from the stories, which may be thick in their
own way. In oscillating between stories and skills-building exercises, we vary the diet and help match
student needs. This same diagram is useful for self teaching.

The spiral alludes to John Saxon's penchant for revisiting the same topics repeatedly, but at different
levels and within different contexts, John H. Saxon (1923 — 17 October 1996) being a curriculum writer
of some noteriety for his “maverick” views.

Included under Lore, in addition to “how things work™ are “the stories of our time” i.e. some of the
long term historical unfoldings, intellectual history as it were. Here are some examples of important
stories:

the rise of Unicode in overcoming language barriers (coding in Klingon)

the emergence of free and open source software (and not just software)

abuses of computer technology (database especially)

the evolution of cryptography including public key (RSA in the browser)

the renaissance in geographic visualization and planning (Google Earth, ESRI)

SOURCE CODE:

File Edit Format Run Options Windows Help

"""module: simplelife.py"""
Biotum:
_init (self, name):
self.name = name

self.stomach = []

_call (self,focd):
self.stomach.append(food)

__repr_ (self):
'Biotum named ' + self.name

Ln: 1 |Col: 0

File Edit Shell Debuyg Options Wndows Help

== simplelife

>>> imp.relocad{simplelife)

<module 'simplelife' from '/home/ki
rby/simplelife.py’'>

> simplelife Biotum
>»>» celll = Biotum({'xV')
>»> cell2 = Bioctum((’'x¥Y')

>>»>> celll.stomach
[1]

>>> caelll ('**')
>>»>> celll.stomach
[**%]

>»>» caelll{'&&&’)
>>»>> celll.stomach
[***1 TEEE]

>»>» caelll{celll)
>>»>> celll.stomach
['**, T&&&', Bictum named xY¥Y]
>

>>>|

Ln: 55 |Col: 4

Some infrastructure for working with Vectors and Edges, including
an xyplotter generator and axes maker.

By Kirby Urner, Sept 13, 2006

Updated Sept 29, 2006:

make Edge color a class-level attribute
add funky derivative demo

refactor a bit

Code:
http://www.4dsolutions.net/ocn/python/stickworks.py

For colorized source:
http://www.4dsolutions.net/cgi-bin/py2html.cgi?script=/0cn/python/stickworks.py

Some relevant discussion:

http://mail.python.org/pipermail/edu-sig/2006-September/007145.html
http://mail.python.org/pipermail/edu-sig/2006-September/007149.html
http://mail.python.org/pipermail/edu-sig/2006-September/007150.html
http://mail.python.org/pipermail/edu-sig/2006-September/007312.html

from visual import vector, cylinder, cross, dot, diff angle
import visual

class Vector (object):

A wrapper for visual.vector that expresses a cylinder via draw(),
always pegged to the origin

radius = 0.03

def init (self, xyz, color=(0,0,1)):
self.v = vector(*xyz)
self.xyz = xyz
self.color = color
self.cyl = None

def draw(self):
"""define and render the cylinder"""
self.cyl = cylinder(pos = (0,0,0), axis = self.v,
radius = self.radius, color = self.color)

def erase(self):
"""toss the cylinder"""
if self.cyl:
self.cyl.visible = 0
self.cyl = None

def _ repr_ (self):
return 'Vector @ (%s,%s,%s)' % self.xyz

some vector ops, including scalar multiplication

def diff angle(self, other):
return self.v.diff angle(other.v)

def cross(self, other):
temp = cross(self.v, other.v)
return Vector((temp.x, temp.y, temp.z))

def dot(self, other):
return dot(self.v, other.v)

def sub (self, other):
temp = self.v - other.v
return Vector((temp.x, temp.y, temp.z))

def add (self, other):
temp = self.v + other.v
return Vector((temp.x, temp.y, temp.z))

def mul (self, scalar):
temp = self.v * scalar
return Vector((temp.x, temp.y, temp.z))

rmul = mul
def neg (self):
return Vector((-self.v.x, -self.v.y, -self.v.z))

def length(self):
return pow(self.v.x ** 2 + self.v.y ** 2 + self.v.z ** 2, 0.5)

length = property(length)

class Edge (object):

Edges are defined by two Vectors (above) and express as cylinder via draw().

radius = 0.03
color = (1,0,0)

def init (self, vO, v1, color=None):
if not color==None:
self.color = color
self.v0 = vO
self.vl = vl
self.cyl = None

def draw(self):
"""define and render the cylinder"""
temp = (self.vl - self.v0).xyz
self.cyl = cylinder(pos = self.v0.xyz, axis = vector(*temp),
radius = self.radius, color = self.color)

def erase(self):
"""toss the cylinder"""
if self.cyl:
self.cyl.visible = 0
self.cyl = None

def _ repr_ (self):
return 'Edge from %s to %s' % (self.v0, self.vl)

def xyplotter(domain, f):
domain should be an initialized generator, ready for next() triggering.
f is any function of x. Consecutive Vectors trace connected edges.
X0 = domain.next()
yo = f(x0)
while True:
x1 = domain.next()
yl f(x1)
e = Edge(Vector((x0, y0, 0)), Vector((x1l, yl, 0)))
e.draw()
yield None
x0, y0 = x1, yl

def axes(x=0,y=0,z=0):

Draw some axes on the VPython canvas
vO = Vector((x,0,0))

vO.draw()

vO = Vector((-x,0,0))

vO.draw()

vO = Vector((0,y,0))
vO.draw()
v0 = Vector((0,-y,0))
vO.draw()

v = Vector((0,0,z))
vO.draw()

vO = Vector((0,0,-2))
vO.draw()

def dgen(start, step):

generic domain generator
while True:

yield start

start += step

def testme():

>>> from stickworks import testme
Visual 2005-01-08
>>> testme()

See:
http://www.4dsolutions.net/ocn/graphics/cosines.png # missing (sorry)

from math import cos
def f(x): return cos(x)

d = dgen(-5, 0.1)
axes(-5,1,0)
graph = xyplotter(d, f)

for i in xrange(100):
graph.next()

def testmemore():
See:
http://www.4dsolutions.net/ocn/graphics/pycalculus.png

def snakeywakey(x):
Polynomial with x-axis crossings at 3,2,-3,-7, with scaler
to keep y-values under control (from a plotting point of view)

return 0.01 * (x-3)*(x-2)*(x+3)*(x+7)

def deriv(f, h=le-5):

Generic df(x)/dx approximator (discrete h)
def funk(x):

return (f(x+h)-f(x))/h
return funk

dl = dgen(-8, 0.1)
d2 = dgen(-8, 0.1)
d3 = dgen(-8, 0.1)
axes(-8,5,3)

deriv_snakeywakey = deriv(snakeywakey)
second deriv = deriv(deriv_snakeywakey)

graphl = xyplotter(dl, snakeywakey)
graph2 = xyplotter(d2, deriv_snakeywakey)
graph3 = xyplotter(d3, second deriv)

Edge.color = (1,0,0) # make snakeywakey red

http://www.4dsolutions.net/ocn/graphics/cosines.png

for i in xrange(130):
graphl.next()

Edge.color = (0,1,0) # make derivative green

for i in xrange(130):
graph2.next()

Edge.color = (0,1,1) # make 2nd derivative cyan

for i in xrange(130):
graph3.next()
if name == ' main_ ':
testme()

[Points of Interest]

* 26 data points A-Z define six polyhedra in the concentric hierarchy

Labels of Numbers of

Shape Volume Vertices Vertices, Edges, Faces
Tetrahedron 1 A -D 4 6 4
Inv Tetra 1 E -H 4 6 4
Duo-tet Cube 3 A -H 8 12 6
Octahedron 4 I -N 6 12 8
Rh Dodecahedron 6 A -N 14 24 12
Cuboctahedron 20 o -2 12 24 14

See: http://www.4dsolutions.net/ocn/qraphics/povlabels.qgif

http://www.4dsolutions.net/ocn/graphics/povlabels.gif

Addendum:

So how does one implement reform in education? Trying to steer from a
national level might seem like a hopeless undertaking, yet constructivist and place
based curricula may be implemented at The local level by small institutions seeking
to niche market themselves as somehow unique. The private sector mom & pog
storefront martial arts academy is a good analogy. On this model, one expects
good deas to spread through imitation, copying, rather than by edict in some
top-down regime. Those writing the curriculum, including the very teachers who
will be using The material, need to find willing sponsors and Guinea pigs ot the
regional level, Buy in by parents, a few friendly politicians, is whats eritical.

Given some freedom to reform on a small scale, by public charter and 7 or
private academy, this incentive to Riche market’ may lead to some exotic
“boutiqué offerings that nevertheless serve as pilots or prototypes for a larger
demographic pool down the road, This s how thedter companies and circus
troupes operate, and so it appropriate that Python be named for AMonty
Pythors Flying Circus, a comedic theatrical troupe purveying a rather specialized
brand of British humoy likewise popular in the Netherlands when Guido van
Rossum was pioneering this new computer language.

My own trajectory has involved intersecting the esoteric math-with-Python
thread with a Rew kind of geometr{ somewhat related to Wolframs Rew kind of
sciencé in that space-filling cellular automata, or “honeycombs are involved, 1
draw much of my material from what are, by today standards, esoteric sources,
For example, The 26 points of interest’ A-2 on the previous page, along with
the associated whole number volumes, trace to Synergetics: Explorations in The
Geometry of Thinking, by R. Buckminster Fuller (Scribner / Macemillan, 1975,
1979). Hardly anyone is using that: 1 have very little competition. From a
niche marketing viewpoint; That nets me a commercial advantage. For students
Just learning algebra, T promote Calels Gattegng approach, again almost
unheard of in many math-teaching circles, yet quite likely to spread,

