Fractals Rule!

Some Background Information Helpful to People Wanting to Understand Fractal Geometry

Background Concepts

- Iterative Sequences
- Seed Values
- Convergence and Divergence
- Complex Numbers
- Complex Plane
- Multiplying Complex Numbers
- Mandelbrot Set and Julia Sets

Iterative Sequences

- Feed a number to a function and get the output.
- Apply the same function to output as new input.
- Continue...

$$
\{\mathrm{x}, \mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{f}(\mathrm{x})), \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x}))), \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x})))), \ldots\}
$$

The orbit of x - Converges? Diverges? Cycles?

Seed Values: An Example

$A_{\mathrm{n}+1}=\mathrm{A}_{\mathrm{n}}+\mathrm{A}_{\mathrm{n}-1}$
Seed Values: $A_{0}=0 \quad A_{1}=1$
$A_{2}=0+1=1$
$\mathrm{A}_{3}=1+1=2$
Sequence:
$\mathrm{A}_{4}=2+1=3$
$0,1,1,2,3,5,8,13,21,34,55,89 \ldots$
$A_{5}=3+2=5$

Sequences in General

Classic examples:
Figurate Numbers
Triangular Numbers: 1, 3, 6, 10...n(n+1)/2
Square Numbers: $1,4,9,25,36 \ldots n^{2}$
Cuboctahedral \#s: 1, 12, 42, 92... 1; 10n²+2
Primes P(n): 2,3,5,7,11,13,17,19,23,29...
(sometimes no rule is known)
See:
Sloane's On-Line Dictionary of Integer Sequences

Cuboctahedral Numbers

Convergence / Divergence

Sequences defined by simple rules:
Additive (e.g. $A_{n+1}=A_{n}+A_{n-1}$)
Geometric (e.g. $\mathrm{z}_{\mathrm{n}}=\mathrm{r} \mathrm{z}_{\mathrm{n}-1}: 2,4,8,16, \ldots$)
Other $\left(\mathrm{z}_{\mathrm{n}}=\mathrm{z}_{\mathrm{n}-1}{ }^{2}+\mathrm{c}\right)$
Sequences defined by partial sums: running totals of elements
Divergent sequences: $\{1,1+1 / 2,1+1 / 2+1 / 3,1+1 / 2+1 / 3+1 / 4, \ldots\}$
Convergent sequences: $\{1,1+1 / 4,1+1 / 4+1 / 9,1+1 / 4+1 / 9+1 / 16, \ldots\}$
Cycling sequences: \{decimal digits of $1 / 7$ \}
Chaotic or aperiodic sequences: \{decimal digits of PI\}

Side Topic：Converging Ratios

Sequence of Fibonacci \＃s： 0，1，1，2，3，5，8，13，21，34，55．．．

Fib $_{n+1} /$ Fib $_{n}$ goes to χ^{\nearrow} as n goes to infinity

$$
\text { 入 }=(1+\text { 区回(1) (1) 目) }
$$

Fibonacci sequence is both additive and geometric

Ratios：
1／1，2／1，3／2，5／3，8／5，13／8．．．

Figure 7．Sections of an equiangular spiral．Although greatly different in size，sections A，B，C and D are identical in shape．（After Davis and Hersh，1986．）

Self Similarity around a single point

Complex Numbers

Caspar Wessel (1745-1818) Jean -Robert Argand (1768-1822)
Abraham De Moivre (1667-1754)
Carl Friedrich Gauss (1777-1855)
Solutions to polynomials sometimes involved complex quantities even when all the solutions were real. Troubling to many.

Generalization of polynomials required expansion of real numbers to this larger set allowing -1 to have even numbers of roots.

Argand Plane

$Z_{1} \times Z_{2}$

Multiply Absolute Values, Add angles

More on Multiplying

Figure 3.4. Vector multiplication.

From 'An Imaginary Tale: The Story of \mathbf{x} © \downarrow ' by Paul J. Nahin Princeton University Press, 1998

Preview: The Julia Set

- So when $|z|=1$, multiplying z by itself just takes you around and around on the unit circle.
- Consider iterations on the complex plane using z values and a fixed c, in $z=z^{2}+c$ (new z from old z).
- So if $\mathbf{c}=\mathbf{0}$, points inside the unit circle converge to $\mathbf{0}$, and points outside diverge.
- The Julia Set is the boundary in between divergent and Convergent, i.e. is the unit circle itself when $\mathbf{c}=0$.

Mandelbrot Set

C = Complex Numbers
Seed Values: $\mathrm{z}_{0}=0, \mathrm{c}$ in C
Function: $\mathrm{Q}(\mathrm{z})=\mathrm{z}^{2}+\mathrm{c}$

For all $\mathrm{c},|\mathrm{c}|$ • 2, compute $\{0, \mathrm{Q}(0), \mathrm{Q}(\mathrm{Q}(0)), \mathrm{Q}(\mathrm{Q}(\mathrm{Q}(0))), \ldots\}$ to some number of iterations N and determine whether the sequence is convergent, divergent or cyclic at that point.

The Mandelbrot Set consists of those points c in C for which the sequence does NOT diverge, when N goes to infinity.

Color code according to how quickly the value escapes (diverges)

Julia Set

Hold c constant for the entire picture, and make Z_{0} be each point in the complex plane.

Julia Set is the boundary between divergent and not-divergent z Values (filled Julia includes not-divergent values)

If c is in the Mandelbrot Set, then the corresponding Julia Set is connected, otherwise it's Cantor Dust.

The Julia set looks similar to the Mandelbrot in the vicinity of c .

